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The phase problem can be cast into a form equivalent to that of certain optimization ]~roblems arising 
in operations research. Computational techniques of mathematical programming developed for these 
problems are thereby made applicable to phase determination. This reformulation of the phase problem 
is derivable by combining the nonnegativity property of electron-density distributions with molecular 
model building. If a structural model is available, the algorithms select phases for the nonnegative 
electron-density distribution, consistent with the measured intensities, that best matches the model. 
If no model is introduced, the algorithms produce some (or all) of the nonnegative distributions con- 
sistent with the data. The approach to the phase-problem presented here is similar to that of R. J. Dakin 
(Acta Cryst. 1970, B26, 2112). However, practical computational tests also are reported: an example, 
the Okl projection of dihydrouracil demonstrates that algorithms based on mathematical programming 
techniques can solve a real structure using real data. The coupling of phase determination with mo- 
lecular model building should be particularly useful in crystallographic studies of biological macro- 
molecules. The algorithms are well-adapted to the introduction of low-resolution models inferred from 
hydrodynamic measurements, or detailed structures suggested by model building or computed by 
energy minimization. 

Introduction 

By combining the general principle of direct methods 
- the nonnegativity of electron-density distributions - 
with molecular model building, the phase problem can 
be cast into a form mathematically equivalent to certain 
problems of operations research (cf Freeman, Sime, 
Bennet, Dakin & Green, 1963; Dakin, 1970). Many 
algorithms, and experience in their use, are thus made 
applicable to problems of X-ray crystallography. 

The purpose of this report is to describe and derive 
this equivalence, and to present computational tests 
for the centrosymmetric case. In succeeding sections, 
we show how the nonnegativity principle may be ex- 
pressed as a set of simultaneous inequalities; also we 
derive the mathematical programming formulation of 
the phase problem for centrosymmetric and general nor_- 
centrosymmetric cases, and present illustrative examples. 
The solution of the 0k/projection ofdihydrouracil, using 
structure factors reported in a recent paper (Rohrer & 
Sundaralingam, 1970), but without introducing any 
structural model, demonstrates that the mathematical 
programming approach to phase determination works 
using real data, at least in a simple case, and that a 
model is not required. 

Expression of  the nonnegativity principle as a set 
of simultaneous inequalities 

The appearance of numerous inequality constraints is 
characteristic of mathematical programming problems. 
To express the nonnegativity property of electron- 
density distributions in this form, let the unit cell be 

divided into nonoverlapping subsets, and let Ok be the 
average value of the electron-density distribution in the 
kth subset. Then if Ok can be expressed as a linear func- 
tion of the structure factors, the conditions Ok > 0, k = 1, 
• . .  M, express an approximation to the nonnegativity 
principle as a set of simultaneous inequalities. The 
accuracy of the approximation inci'eases with the 
fineness of the partition of the unit cell into subsets. 

For the purpose of computing the coefficients in 
these inequalities, it is convenient to think of two ex- 
pansions of the electron-density distribution, using dif- 
ferent sets of expansion functions. The precise form of 
the inequalities can then be derived from the standard 
equations of transformation between two basis sets. 

First, consider the conventional Fourier expansion 
in trigonometric functions• Let this basis set be denoted 
by Zh = V~- 1/2 exp (-- 2zcih. r), in which Vc is the volume 
of the entire unit cell, and the vector subscript h spe- 
cifies a triple of Miller indices. The functions Zn are 

normalized so that (Xh,Xh')= I Z ~* (r)zh,(r)dr = 1. 
unit c e l l  

In centrosymmetric cases it is appropriate to choose 
the basis set Z000= V~1/2; X.h=(2Vc) -1/z COS (2nh. r), 
h~(0,  0, 0). 

The second expression for the electron-density dis- 
tribution is an expansion in terms of the set of charac- 
teristic functions of a partition of the unit cell. (The 
characteristic function of a set is the function that 
takes the value 1 at points in the set and 0 at points 
outside.) Thus, the second expansion is a step function 
whose value at any point is the average value of the 
electron density in that subset of the unit cell containing 
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the point in question. Note that these characteristic 
functions are themselves real and nonnegative; i.e., 
these desired properties of the computed electron den- 
sity are built directly into the expansion functions. 

Let {Xk} denote such a partition, i.e., U Xk = C (the 
unit cell), and Xk C/Xk, = O, (the null set) if k 4: k'. V1, 
is the fractional volume of Xk, relative to the entire 
unit cell. The number, sizes, and shapes of the sets Xk 
are arbitrary, but it is convenient to choose them with 
the symmetry of the unit cell. Also, it is convenient to 
index these functions by a vector k, since this is a 
natural way to specify members of a three-dimensional 
array. 

The set {~Uk} of normalized characteristic functions 
of the sets Xk, defined by: g/k(r) = Vk 1/2, r~Xk; ~tk(r) __ 
0, r ¢ Xk; is orthonormal. The electron-density distri- 
bution in the unit cell, Q(r), can be approximated by 
an expansion of the form Q(r)= ~kCk~Uk(r). 

A transformation matrix A relates the expansion 
coefficients ek to the structure factors F h (the coefficients 
of the original Fourier expansion): 

Ck = ~ hAkhFh= ~h "~kh exp (iCXh) , 

in which *kh = AkhlFhl and ~h is the amplitude or phase 
angle of Fh. The matrix element Akh is simply the 

scalar product (Vk,Zh)= Vkl/21 Zh(r)dr. ek is propor- 
0Xk 

o 
0 0.2 0.4 0.6 0.8 1.0 

% 

Fig. 1. Electron-density distr ibut ions for two atoms in a one- 
dimensional centrosymmetric unit cell. Abscissa: fractional 
coordinate x/a; ordinates: arbitrary linear scales. (a) Basis 
functions distributed equally throughout the unit cell. (b) 
Basis functions concentrated under peaks of (a). 

tional to the average value of the electron density distri- 
bution in Xk. 

The nonnegativity constraint is then expressed, ap- 
proximately, by the simultaneous inequalities: 

Ck = ~h Akh exp (i~h) --> 0,  

which, in this form, are linear in trigonometric func- 
tions of the phase angles. Substitution of a new set of 
variables equal to cosines and sines of the phase angles 
linearizes these inequalities, at the expense of certain 
additional constraints whose particular form depends 
on the symmetry group of the crystal. 

Mathematical programming formulation 
of the phase problem 

The computational task of determining the nonnega- 
tive distribution consistent with measured structure- 
factor magnitudes, which best resembles a model, is 
equivalent to one of several types of mathematical 
programming problems. 

If the unit cell is centrosymmetric, all structure factors 
are real. It is convenient to make the substitution 
Xh=l /2 [ l+exp  (&h)]; Xh is then a Boolean variable, 
taking on the value 1 if ~h = 0 and 0 if ~h = re. Define 
bk = - Y h A k h .  

The average value in the set Xk of the computed 
electron density for some choice of phases is then ck = 
Yh(2*khXh)+bk. If a structural model has analogous 
expansion coefficients (Cm)k, then to find the best 
match between the model and the computed electron- 
density distribution, the quantity to be maximized is: 

~k (Cm)kCk: ~ k  (Cm)k[~h (2"~kkhXh "at- bu] 

= 2 ~.h [ ~ k  (¢m)kAkh]Xh + ~..k (Cm)kbk • 

Defining (e~,,)h= YU(Cm)UAkh, and dropping the second 
term since it is independent of the choice of phases, the 
quantity to be optimized by suitable choice of the 
variables Xu reduces to Yh(C'm)hXh. 

The nonnegative electron-density distribution, con- 
sistent with the experimental data, that best matches a 
model, is then the solution of a Boolean programming 
problem: 

Maximize Cm.X subject to the constraints" 

2A. x + b > 0 ,  
Xh=O or 1 . 

If no model is introduced, it is still possible to apply 
the nonnegativity constraints alone: solutions of the 
simultaneous linear Boolean inequalities 2.~. x + b > 0, 
Xh=0 or 1, produce phases for some nonnegative 
electron-density distribution consistent with the meas- 
ured intensities. An example, the Okl projection of di- 
hydrouracil (presented in a subsequent section), shows 
that it is possible to solve structures in this way, without 
introducing a model. The conclusion is that a model 
can be useful for preselecting the correct member of a 
set of homometric structures and for speeding the 
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computation, but it is not an absolute requirement of 
this approach.* 

In noncentrosymmetric space groups, phases may, 
in general, take on any value in the interval [0, 2r0. 
As before, let % be the vector of expansion coefficients 
of a model on the basis set {~'l,}. Let e~,= e~.~, and 

t t  t r  ~ t t  " " ~ ! em -- cm • A , m whtch A and ~i" are the real and Imag- 
inary parts of,~. Defining xh = cos an, and Yh = - - s i n  an, 
the programming problem takes the form: 

maximize ~ h  [(C~,)hXh + (C~)hyh], 

subject to the constraints: 

cu = E[-~"khXh +-g'~Yh] > 0 
- 1 < X h <  1, --1 <yh<_ 1 

x2h +y2 = 1. 

In most space groups, the symmetry restricts certain 
phases to a discrete set of values; these phases can be 
described by Boolean variables as in the centrosym- 
metric case. For these space groups, the programming 
formulation of the phase problem is of the mixed 
integer-continuous type. 

Computational tests 

Two examples illustrate the application of mathema- 
tical programming techniques to the phase problem in 
centrosymmetric cases. The first is a model problem, 
consisting of two point atoms in a one-dimensional 
centrosymmetric unit cell. The second, the Okl pro- 
jection of dihydrouracil, represents a test of the method 
on actual experimental data, taken from a recently 
published paper (Rohrer & Sundaralingam, 1970). 

Model problem 
Consider a one-dimensional centrosymmetric unit 

cell, a = 1 0  ,~, containing t w o '  " " point Alnonvxbratlng 
atoms, at X=1.941 and 8.059 . Thirteen structure 
factors (the entire copper sphere) were computed. The 
constraint Q>0 was relaxed to Q > - F / I O ,  because of 
the artificial sharpness of the atoms. 

Two different basis sets were studied. First, the unit 
cell was divided into 12 equal intervals. The basis set 
consisted of the six characteristic functions of centro- 
symmetric combinations of pairs of intervals. 

In this example, the Fourier basis set is 2"0 = 1 ; 2"h = 
2 -lz2 cos (2~hx), h > 0. Here x is a fractional coordinate. 
The characteristic function basis set is defined by 

q/k(X)=(12) 1/2, if (k--1)/12<_x<k/12 
or 

1 -  (k/12)_< x < 1 - [ ( k -  1)/12], 

and 0 otherwise; for k = 1, . . .  6. Both sets of functions 
are centrosymmetric, i.e., Zh(x) =2'8(1 - x) and 9'k(x) = 

* This formulation in terms of Boolean variables could be 
applied to noncentrosymmetric problems also, if structure-fac- 
tor magnitudes from a single isomorphous derivative are also 
measured. In that case too, experimental data determine the 
structure factors up to a choice between two possible phases. 

~uk(1-x). Therefore, the matrix elements Akh= 

(gtk,Xh) are equal to 2]/12ik/12A COS 2z~hxdx=2]/12 
d(k-l)/12 

[sin (2zck/12)- sin (2zc(k + 1)/12)]. 
The structural model introduced was a broad peak 

extending over the outer thirds of the unit cell: it took 
on the values 8, 10, 10, 8, 1, l, 1, 1, 8, 10, 10, 8 on 
successive twelfths of the unit cell. 

The Boolean programming algorithm applied was 
the implicit enumeration technique of Balas (1965), as 
described by Geoffrion (1967).I" A single iteration of 
the algorithm produced the distribution shown in Fig. 
l(a), localizing the solution to the proper sixth of the 
unit cell. 

The second basis set shows how a low-resolution 
structure such as that in Fig. 1 (a) can be parlayed into a 
higher-resolution structure. It illustrates the versa- 
tility available through a more general choice of basis 
set. 

The two intervals under the peaks in Fig. l(a) were 
each divided into 10 equal subintervals. Ten basis func- 
tions were characteristic functions of centrosymmetric 
unions of pairs of these subintervals; the last was the 
characteristic function of the rest of the unit cell. Thus, 
by partitioning the unit cell into subsets of different 
sizes, regions of high interest can be studied at high 
resolution, and regions of low interest can be studied 
at low resolution. 

The sharply peaked distribution shown in Fig. l(b) 
was computed with the second basis set, using phases 
derived from the low-resolution structure. 

Dihydrouracil, Okl projection 
The second example, the Okl projection of dihy- 

drouracil, serves to demonstrate that the method works 
with real data, and that a model is not essential. Cell 
dimensions are a=4.201,  b=5.816, c =  19.777 A, f l= 
95" 15°; there are four molecules in each unit cell. The 
Okl projection has pgg symmetry. 

The measured magnitudes of 66 structure factors, 
h = 0, 0 < k < 4, 0 < l < 14, were introduced, and two 
signs were fixed to define the origin. No model was 
used. A basis set of the proper symmetry was construc- 
ted by division of b into 8 equal intervals and c into 
30, to produce a grid of almost square rectangles. The 
60 basis functions were the characteristic functions of 
unions of symmetry-related tetrads of rectangles. 

Non-negativity constraints (relaxed to 0 > - 0 . 0 1  
F000) take the form of simultaneous linear inequalities 
in Boolean variables. A program coded directly from 
the algorithm of Hammer & Rudeanu (1968) fixed 

t Programs were coded for the IBM 360/91 to effect the 
basis transformation, to solve simultaneous linear Boolean 
inequalities (Hammer & Rudeanu, 1968), and to solve Boolean 
programming problems (Balas, 1965 ; Geoffrion, 1967). These 
were coded by the author, making use of standard IBM-sup- 
plied FORTRAN library subroutines and a sorting program 
distributed by the Quantum Chemistry Program Exchange 
(Rochkind, 1970). Programs were executed under OS release 18" 
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the signs of 44 structure factors.$ A Fourier transform 
showed enough of the molecule to permit the positio- 
ning of an atomic model in the unit cell. Fig. 2 shows 
the original Fourier transform and a partially refined 
structure. 

Relation to other work 

During the preparation of this article, the earlier work 
of Dakin (1970), presenting much the same basic idea, 
came to the author's attention. The formulation pres- 
ented here differs from Dakin's primarily in that the 
quantities to which the nonnegativity constraint is 
applied are not a sampling of the computed electron- 
density distribution at points of a mesh; instead, they 
are the average of the computed electron density over a 
region in space. This may be preferable, since trun- 
cation errors can cause the computed distribution to 
dip negative. 

The practical application of mathematical program- 
ming algorithms to the phase problem has been initi- 
ated by the demonstration that such an approach can 
work successfully with real data. 

Discussion and conclusions 

The mathematical programming formulation of the 
phase problem combines the powers of direct methods 
based on the nonnegativity principle and molecular 

:I: See footnote marked elsewhere with I". 

model building. The equivalence of the phase problem 
to problems of operations research makes possible the 
application of previously developed algorithms and 
computational experience. 

Computational tests reported here demonstrate the 
feasibility of using Boolean programming algorithms 
for centrosymmetric problems. Computational exper- 
iments currently in progress are designed to apply the 
more powerful algorithms available (Balinski & Spiel- 
berg, 1969; Byrne & Proll, 1969; Geoffrion, 1969; Gue, 
Liggett & Cain, 1968; Roth, 1970) to larger examples 
of the centrosymmetric case, and to test the method 
in a noncentrosymmetric case. In a preliminary, but 
nevertheless encouraging, trial the Boolean program- 
ming code of Geoffrion & Nelson (1968) determined 
phases for the Okl projection of dihydrouracil with 
sufficient accuracy to position an atomic model in less 
than 0.5 seconds on an IBM 360/91. 

It is hoped that these techniques will prove useful 
in solving the structures of biological macromolecules, 
for which structural models are often available. Hydro- 
dynamic and low-angle X-ray scattering experiments 
that determine rough molecular dimensions are sources 
of low-resolution models for biological macromolecules. 
Prof. R. Langridge has suggested that electron micros- 
copy might also provide models. A priori predictions 
of the conformations of proteins of known amino acid 
sequence, or nucleic acids of known base sequence, 
could, if successful, produce detailed high-resolution 
models. 
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Fig. 2. Electron-density distributions for the Ok/projection of dihydrouracil. Top: preliminary electron density from phas- 

ing program. Bottom: partially refined structure. Half-tone drawings of the projected electron density were produced by a 
program that differed only in minor details from one written by MacLeod (1970). 
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Bestimmung der )[nderung der Gitterkonstanten mad des Anisotropen Debye-Waller-Faktors 
yon Graphit mittels Neutronenbeugung im Ternperaturbereich yon 25 °C bis 1850°C * 

VON A. LUDSTECK~" 

Physik-Department der Technischen Hochschule, Miinchen, Deutschland (BRD) 

(Eingegangen am 10. Juli 1970 und wiedereingereicht am 12. Januar 1971) 

With a double-axis spectrometer the neutron-scattering cross section da/dI2 of polycrystalline graphite 
has been measured as a function of temperature. The elastic coherent scattering yielded the variations 
of the lattice constants for the directions parallel and perpendicular to the c axis of the hexagonal 
graphite lattice. For these lattice directions also the Debye-Waller factors have been determined and 
from them the mean-square vibration amplitudes of the atoms and the effective Debye temperatures 
have been calculated. 

Einleitung und theoretische Grundlagen 

Die Dynamik des Kristallgitters von Graphit wurde 
bisher meist nur theoretisch untersucht, da viele 
Experimente, z.B. die Messung von Dispersionskurven, 
durch das Fehlen yon Graphit-Einkristallen erschwert 
oder unm(Sglich sind. Auch die Debye-Waller-Fak- 
toren von Graphit wurden fast ausschliesslich indirekt 
aus der Temperaturabh~ingigkeit der spezifischen Wiir- 

* Auszug aus der yon der Fakult/it ffir Allgemeine Wissen- 
schaften der Technischen Hochschule Mfinchen genehmigten 
Dissertation: Messung des einfach-differentiellen Neutronen- 
streuquerschnittes yon polykristallinem Graphit im Temperatur- 
bereich yon 25°C bis 1850°C, von Dipl.-Ing. Alexander Lud- 
steck (Tag der Promotion: 20. Februar 1969). 

t Gegenw/irtige Adresse: Siemens AG, 8 Mfinchen 80, Balan- 
strasse 73, Deutschland. 

me bestimmt. Berechnungen der Debye-Waller-Fakto- 
ren aus der Nnderung der Intensit/it der elastisch koh/i- 
renten Streuung fiber einen grossen Temperaturbereich 
wurden bisher nicht durchgeffihrt. Ffir diese Methode 
ist ein pr~izises Neutronen-Pulverspektrometer beson- 
ders gut geeignet, da mit dieser Apparatur  auch am 
Polykristall die Intensit/iten der elastischen Streuung 
ffir Impulsfibertr/ige in den beiden ausgezeichneten 
Richtungen des Graphitgitters getrennt gemessen 
werden k~Snnen. Ausserdem kann man mit Neutronen- 
spektrometern h~Shere Probentemperaturen erreichen 
als bei Messung mit R/Sntgenstrahlen. 

Graphit kristallisiert in einem nach ihm benannten 
hexagonalen Gitter (Bernal, 1924; Wyckoff, 1963) 
mit 4 Atomen je Elementarzelle, deren Koordinaten 
(000), (½½0), (00½) und (233~) sind. 

Die primitiven Translationsvektoren des Gitters 


